If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$ by Theorem 6, so $\lim_{n \to \infty} \frac{1}{a_n} \neq 0$, and so $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is divergent by the Test for Divergence.

Problem 2

a)
$$\lim_{n \to \infty} \left\{ \left(\sin \frac{1}{n^3} \right) / \left(\frac{1}{n^3} \right) \right\} = \lim_{n \to \infty} \frac{\frac{d}{dn} \left(\sin \frac{1}{n^3} \right)}{\frac{d}{dn} \left(\frac{1}{n^3} \right)} = \lim_{n \to \infty} \frac{\cos \frac{1}{n^3} \frac{d}{dn} \left(\frac{1}{n^3} \right)}{\frac{d}{dn} \left(\frac{1}{n^3} \right)}$$

l'Hôpital's rule

$$= \lim_{n \to \infty} \cos \frac{1}{n^3} = 1 > 0$$

b)
$$\sum_{n=1}^{+\infty} \frac{1}{n^3} \text{ is convergent } p \text{ - series } (p = 3 > 1)$$

Taking into account the result from a) where $\lim_{n\to\infty} \left\{ \left(\sin \frac{1}{n^3} \right) / \left(\frac{1}{n^3} \right) \right\} = 1 > 0$

then the Limit comparison tests ensures also that

 $\sum_{n=1}^{+\infty} \sin \frac{1}{n^3}$ is convergent

If $a_n = \frac{(5x-4)^n}{n^3}$, then
$$\begin{split} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{(5x-4)^{n+1}}{(n+1)^3} \cdot \frac{n^3}{(5x-4)^n} \right| = \lim_{n \to \infty} |5x-4| \left(\frac{n}{n+1} \right)^3 = \lim_{n \to \infty} |5x-4| \left(\frac{1}{1+1/n} \right)^3 \\ &= |5x-4| \cdot 1 = |5x-4| \end{split}$$
By the Ratio Test, $\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$ converges when $|5x-4| < 1 \iff |x-\frac{4}{5}| < \frac{1}{5} \iff -\frac{1}{5} < x - \frac{4}{5} < \frac{1}{5} \Leftrightarrow \frac{3}{5} < x < 1$, so $R = \frac{1}{5}$. When x = 1, the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent *p*-series (p = 3 > 1). When $x = \frac{3}{5}$, the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$ converges by the Alternating Series Test.*

The series is convergent for $3/5 \le x \le 1$

*You can also say that it is absolute convergent as a p-series with p=3 so it is convergent

The series is a convergent geometric series so that

 $|e^{c}| = e^{c} < 1$ thus we must have c < 0

$$\sum_{n=0}^{+\infty} e^{nc} = \frac{1}{1 - e^c} = D \Longrightarrow 1 - e^c = \frac{1}{D} \Longrightarrow 1 - \frac{1}{D} = e^c$$
$$c = \ln\left(1 - \frac{1}{D}\right) < 0 \text{ as it should because } D > 1.$$

a)
$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{4}{n^6} \frac{1}{(1+x^2)} = 0$$
 for $x \in (-\infty, +\infty)$

$$|f_n(x) - 0| = f_n(x) = \frac{4}{(x^2 + 1)n^6} < \frac{4}{n^6} < \frac{4}{N^6} = \varepsilon \text{ for } n > N$$

For every ε there is N (given by $\frac{4}{N^6} = \varepsilon$) so that for n > N to have $|f_n(x) - 0| < \varepsilon$ for all $x \in \mathbb{R} \Rightarrow$ Uniform convergent for $x \in \mathbb{R}$

The differential equation is $mx'' + kx = F_0 \cos \omega_0 t$ and $\omega_0 \neq \omega = \sqrt{k/m}$. Here the auxiliary equation is $mr^2 + k = 0$ with roots $\pm \sqrt{k/m} i = \pm \omega i$ so $x_c(t) = c_1 \cos \omega t + c_2 \sin \omega t$. Since $\omega_0 \neq \omega$, try $x_p(t) = A \cos \omega_0 t + B \sin \omega_0 t$. Then we need $(m)(-\omega_0^2)(A \cos \omega_0 t + B \sin \omega_0 t) + k(A \cos \omega_0 t + B \sin \omega_0 t) = F_0 \cos \omega_0 t$ or $A(k - m\omega_0^2) = F_0$ and

$$B(k - m\omega_0^2) = 0$$
. Hence $B = 0$ and $A = \frac{F_0}{k - m\omega_0^2} = \frac{F_0}{m(\omega^2 - \omega_0^2)}$ since $\omega^2 = \frac{k}{m}$. Thus the motion of the mass is given

by
$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t + \frac{F_0}{m(\omega^2 - \omega_0^2)} \cos \omega_0 t$$
.